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In most hereditary cancer syndromes, finding a
correspondence between various genetic mutations
within a gene (genotype) and a patient's clinical cancer
history (phenotype) is challenging; to date there arefew
clinically meaningful correlations between specific DNA
intragenic mutations and corresponding cancer types.
To define possible genotype andphenotype correlations,
we evaluated the application of data mining
methodology whereby the clinical cancer histories of
gene-mutation-positive patients were used to define
valid or "true" patterns for a specific DNA intragenic
mutation. The clinical histories ofpatients with their
corresponding detailed attributes without the same
oncologic intragenic mutation were labeled incorrect or
'false"patterns. The results ofdata mining technology
yielded characterizing rules for the true cases that
constituted clinical features which predicted the
intragenic mutation. Some ofthe initial results derived
correlations already independently known in the
literature, adding to the confidence of using this
methodological approach.

INTRODUCTION

At the global level, a significant cancer family history
predicts crtain gene mutations."2 For example, a strong
famnily histoy ofbreast cancer implies possible mutations
in the BRCA1 or BRCA2 genes, while a strong family
history of colon cancer suggests possible mutations in
mismatch repair genes such as MEH1 or MSH2.3-5
Cancer family history backgrounds have already been
widely used by genetic counselors in assisting patients'
decisions regarding genetic testing. Beyond the global
level, strong research interest exists in discovering patient
characteristics which may predict specific intragenic
mutations within particular genes and vice versa.

For example, there are dozens of known, clinically

pertinent, specific mutations in the BRCA1 gene, and
numerous other genes have equally many pertinent
intragenic mutations.6 There is a basis of expectation that
intragenic mutations can be characterized by clinical
manifestations. For instance, the work of Gayther et al.
suggest intragenic truncating mutations within the first
two-thirds of the BRCA1 gene (a breast cancer gene)
give rise to an excess of ovarian cancer compared to
mutations in the last third.7 This finding remains an open
question since research by Serova et al. was unable to
confirm the Gayther findings.8 Overall, there is to date
very little replicated research that links specific intragenic
mutations within individual cancer susceptibility genes to
particular clinical cancer family history presentations.

However, such links would prove quite useful since, for
any given individual, testing procedures attempt to find a
single mutation among the known mutations in a gene.
A single mutation, iffound in a given family, is sufficient
since there is only the most remote probability that there
is more than one significant mutation running in that
family. Thus laboratory testing strategies would be far
more cost-effective if they could take advantage of
clinical data to narrow initially the search among all the
known mutations in a gene to just a few mutations with
the highest probabilities of concordance. The more these
particular intragenic mutations could be accurately
predicted and confirmed at very low cost, the more
genetically susceptible patients would benefit.

Conversely, knowledge of a specific intragenic mutation
correlated to a phenotypical presentation may assist the
clinician and genetic counwselor in predicting future cancer
occurrences in an individual or family. It is also possible
ta patients' knowledge of the extremely high prospects
for a significant intragenic mutation might aid them in
making eir decision ofwhether to elect to undergo gene
testing.
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In addition, connecting some medical characteristics to
mutational data may permit deeper insights into the
functional or dysfunctional implications of the various
mutations of the genes as well as permit possible
identification of other associated genes that may be
involved with the disease.

Thus the desired outcome of this research effort was to
correlate specific clinical features from patients' cancer
family histories with particular DNA intragenic
mutations. This basic challenge can be described as
characterizing genotypical results (i.e., specific gene
mutations) in phenotypical terms (i.e., patient
characteristics). Our evaluation of using the
methodological approach of data mining to solve this
problem is described below.

METHODS

We applied the methodology of data mining to define
mutational outcomes in terms of patient attributes. The
methodology of data mining is a computational method
which analyzes a set of patterns comprised of values
(descriptive as well as numerical) assigned to attributes
describing the pattern.9-10 The algorithm of datamig
applied in this research in turn is derived from the theory
ofrough sets, which is a formal mathematical framework
for the discovery and representation of regularities in a
data set. Essentially rough set methodology provides
rigorous mathematical techniques to evaluate the effect of
data representation as it pertains to the detection of
patterns in the data, particularly imprecise and noisy
data.9'-0 At a brush-stroke level, this approach may be
distinguished from fizzy set theory which imposes a
numerical metric on imprecise linguistic concepts or
human judgments, or neural nets which identify
fimctional relationships in specifically numerical data.

Data mining software analyzes a set of information
presented typically in a matrix array, in which each row
of the matix represents an example or instance of the
phenomenon ofinterest and each cell within the row (i.e.,
a column ofthe matix) represents some descriptor ofthe
phenomenon. For example, each row may represent a
patient with the first column indicating which disease (if
any) the patient has had, the second column indicating
what age he or she had the disease, the third indicating
whehr the patient is a smoker ("yes" or "no" value), etc.
For certain rows (viewed as patients), these rows are
marked "true" examples ofany phenomenon of interest on
the part of the user of the software (e.g., certain patients
are identified as true cases of "hereditary breast cancer,"
or true cases of "patients who survived some disease five
or more years," or true cases ofpatients "who do not buy
life insurance," etc.).

Data mining software selects constituent elements
(column values) for each row so that one or more boolean
logical relationships among these elements characterizes
(i.e., predicts) all the "true" examples that were marked,
as noted above. One can select which column values the
software may utilize to construct possible rules. Through
an efficient yet exhaustive process that is complete and
systematic, data mining algorithms can find valid rules or
patterns that can be constructed so that one or more of the
"true" cases are characterized by that rule. The set of all
such rules taken together define or characterize the set of
"true" patterns provided, and as such, may be thought of
as an expert rule-based system which defines or
characterizes the patterned "true" set selected.

In our application, the pattern of interest is the cancer
family history and associated attributes of a patient
population who have undergone gene testing and have
tested positive for some specific intragenic mutation in a
specific gene. We focused on seven key clinical
attributes (summarized in Figure 1) to characterize a
cancer family history pattern. Although other researchers
might identify a different set of attributes, these seven
were distilled from over tirty-five years of clinical
experience as well as the cancer genetics literature.'"1.2

The first is the types of cancers the patient and the
patient's relatives have had. The values over which this
attribute may range is approximately 40 different cancers
of anatomic sites and organ systems. The second
attribute is the relationship ofrelatives with cancer to the
patient, which essentially is either a first or second
degree relative depending upon whether they are a
mother, father, or sibling (first degree relatives), or an
aunt, uncle, or grandparent (second degree relatives).
The third attribute is the age of onset of the cancers,
which is a numerical value usually between 1 and 100.
The fourth attribute is whether there is evidence of
vertical transmission of cancer through generations, with
values of 1, 2, or 3 to indicate if one, two, or three or
more ofthe patient's family history generations have had
cancer. The fifth attribute is similar to the prior one,
except the question is whether there are the same cancers
within the same generation, with values 1, 2, and 3 also.
The sixt attrbute whether the identical type of
cancer has occurred within the patient's family history,
irrespective of where in the family tree it occurs (with
similar values 1, 2, and 3 depending on how many similar
cancers are present). The seventh attribute is the extent
to which one side ofthe family or the other (the pateinal
or maternal side) exhibits a great deal of cancer of any
type, with values of 1, 2, and 3 depending upon whether
less than one-third of the group has had any type of
cancer, more than one-third, or more than two-thirds.

254



When the analysis process was completed, certain very
characteristic patterns ofmultiple primary cancers arose
which can be associated with individual gene mutations
(e.g., more frequent occurrences of ovarian and prostate
cancer in relatives of a patient with breast cancer). This
pattern of highly characteristic, associated cancers in
effect comprised an additional characteristic, derived
from the initial seven attributes.

Key Attributes ofA Cancer Family History

1. Itemized cancers among the patient's relatives
2. Relationship of cancer-affected relatives to patient
3. Age of onset of cancers
4. Evidence of vertical transmission
5. Evidence of cancer in the same generation
6. Repetition of identical cancers in the family
7. Level of overall cancer occurrences

Figure 1 - Selected Features ofHereditary Cancer

One should note that the key clinical attributes we
employed cannot be expected to finction with full
perfection. A number of additional unavailable
descriptive factors may be gennane such as the ethnic
background of the patient. For example, Ashkenazi
Jewish women have been found to have an approximately
1% prevalence of the 185delAG mutation in the BRCA1
gene.'3 Still other mitigating circumstances may be
present, limiting the value of the information collected,
such as reduced penetrance of the germ-line mutation,
limited data regarding the actual cancers in the patient's
family, the true ages of cancer onset, or confounding
factors such as false paternity, etc. Hence any results
obtained may be constrained due to the inherent
obfuscating factors that inevitably arise in the analysis of
cancer famnily histores. Our research implicitly advances
the normative position that the seven attributes presented
constitute a practical and productive set which will yield
useful characterizations.

As previously noted, in the general application of data
mining methodology, selected cases are marked valid (or
"true") if they represent the pattern of interest.
Otherwise, they are marked as incorrect examples ofthe
pattern (or labeled "false"). The process considers the
two sets in such a way as to construct those rules which
distinguish true from the false examples of the pattern
of interest. The rules are comprised of one or more
selections from the key attributes together with their
range of values so that such assignments constitute rules
that define or characterize the true set. In our particular
application, we had the data from DNA genetic testing on
those patients and their family histories for which specific

mutations were detected. Thus for a specific positively
detected mutation, mutation 5382-insertion C in the
BRCA1 gene, we had confidential patient histories in
terms of their specific attributes and the particular
positive or negative results from their genetic tests for the
specific mutation of interest. The cancer family histories
of patients with positive mutation test results for a
mutation of interest defined the valid or true set. The
remaining patients' cancer family histories of individuals
who tested positive for some other mutation in the gene
but not the mutation of interest were defined to be
incorrect or negative examples ofpatient history attribute
data.

RESULTS

We collected the data offamily histories ofpatients who
manifested a variety of mutations in the BRCA1 and
BRCA2 genes which yield breast and/or ovarian cancers.
For our first focus, we defined patients who exhibited a
5382-insertion C mutation in BRCA1 as true (N=40);
patients who carried some mutation other than 5382-
insertion C were labeled as false (N=505). Using our
own data mining technology14 to derive rules, the
following results were obtained:

(#1) all rules contained the attribute "early age of
onset" with very high values

(#2) nearly all rles indicated a rather intense family
tree ofbreast cancers, with typically more than
3 cases within one generation ofeach other.

One ofthe actual rules takes the forn of:

Ca32a=4 AND 5< Early < 6 AND Gen=2

where Ca32a is the code for first degree relatives with
breast cancer (which in this rule must have at least four
such cases). Early refers to early onset of breast cancer,
where three points are assigned if any case arises at or
before the age of 35, two points are assigned if a case
arises between age 36 and age 45, and one point is
assigned for a case arising between 46 and age 50. Gen
refers to the presence ofcancers in the same generation,
which for this rule requires at least two cases in the same
generation. Thus results #1 and #2 above provide
specific phenotypical characteristics that predict
genotypical results, applicable to the case of patients with
a positive mutation 5382-insertion C.

In subsequent runs, we tested (from our data set) four
other BRCA1 mutations: 185delAG (N=30), exon 5
missing (N=20), 4808 (N=46), and inferred regulatory
mutation (N=12). Rule results were successfiully
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obtained on these four additional BRCA1 mutations (the
two rules for mutation 5382-insertion C noted above
remained a unique characterization for that mutation,
although this outcome must be re-evaluated when larger
values ofN become available). The sample size for other
specific mutations were smaller than these and were not
evaluated; for the same reason, individual BRCA2
mutations were also not yet evaluated. In the general case
to date, we obtain a variety of rules, one of which may
emphasize very early onset of breast cancer in concert
with ovarian cancers in siblings, another may emphasize
vertical transmission together with a high repetition of
related cancers, etc.

As a second effort, we declared all patients with my
BRCA1 mutation as true (N=4415), and =y patient with
any BRCA2 mutation as false (N=130). The rules
derived would differentiate BRCA1 from BRCA2
patients. The results of this study produced a single,
differentiating result:

I there are one or more first degree
ovarian cancers in the cancer
family history, then a BRCA1
mutation should be considered first.

DISCUSSION

The data mining approach as we applied it yielded
criteria which could depict intragenic mutations based on
selected cancer family history attributes. In looking at the
data for the result concening mutation 5382-insertion C
which the data ining method utilized, we found that
80.0% of all the cases were characterized by results #1
and #2 summarized above. That is, 80% of the genotype
(mutation 5382-insertion C) will be described by either
results #1, #2 (or possibly both), and we would predict a
BRCA1 5382-insertion C genotype with an 80%
confidence level. Although this outcome suggests that
the rules might lead to a correct guess 80% ofthe time, it
is tmpered by the fact that this is the data utilized by the
method itself, and the method may have created a
tautology for the data set under review.

Moreover where we have obtained results which could be
corroborated with independent results in the published
literature, our sample sizes have most often been N=70
or higher. For example, in the case of the latter result
differentiating BRCA1 from BRCA2 (N=415), it has
already been determined in the literature that ovarian
cancer is far more highly correlated with BRCA1 than
BRCA2.'5 Thus, although this particular experiment did
not yield new scientific information, the fact that we
derived alrey known and independently developed data
lends credibility to the approach undertaken. The key

recognition is that this approach converges with
increasing reliability and confidence to highly significant
results as the input database expands.

What is attractive about this approach is that the
characteristics predicting specific mutations are cast in
both clinical terms as given by a patient's cancer family
history as well as by descriptive and/or numerical values
assigned to the different characteristics. Thus definitive
information is provided which researchers can use to
guide further etiologic investigations based on the
attributes involved and their relationship to the gene at
issue, the cancers under consideration, and other known
aspects about the disease.

As we have applied this method to a wide variety of
intragenic mutations as well as to an increasingly larger
set of mutations for single genes (e.g., all mutations for
BRCA1), we have begun to derive a distinction between
those clinical attributes which are more significant in
their predictive value and those less so. Our expectation
is that this could lead to a more normative-free
classification ofmajor and minor criteria pertinent in the
assessment of hereditary cancer. Such criteria could
ultimately be the basis for a classification scheme to aid
in the diagnosis and management ofhereditary cancers.

In contrast to the method presented, an approach that
used neural networks does not provide the explanatory
component that data mining methodology yields.1&"7 In
addition, a strictly rule-based expert system cannot
autmatically take advantage ofthe torrent ofdata that is
forthcoming from ongoing gene testing.'8 In contrast,
data min g thrives on the benefit of increased data since
this permits more precise refinements between the true
and false cases.

Placed in the context of the total cancer burden in the
population which surpassed 1.3 million new cases last
year, the estimated hereditary component of 5-10%
implies 65,000 to 130,000 hereditary cases per year.'9
Given the prospects for testing a significant cohort of
these individuals in the future as well as relatives of
affected patients, such prospects argue for initiatives as
we have presented to achieve cost-effective testing
strategies.

CONCLUSION

The emerging area of molecular medicine stands to
benefit from added insights into the correlation of those
patient characteristics that predict specific genetic
mutations as well as specific mutations within various
genes. The application of data mining to laboratory test
data yields useful results that can build a body of
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knowledge about the underlying patient clinical picture,
using clear and discernible clinical attributes, which can
characterize intragenic mutations.

These data also permit us to predict likely occurrences of
specific cancer panens for disease-unaffected individuals
with positive intragenic mutation test results. Such
knowledge could be applied by the clinician to
significantly aid cancer screening and cancer prevention.
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